HIERARCHICAL REPRESENTATION OF THREE-DIMENSIONAL OQBJECTS

USING VEREAL MODELS

Technical Wote 182

March 1979

By: Gerald J. Agin, Senior Computer Scientist

Artificial Intelligence Center

SRI Project 1187

The work reported herein was supported by the O0ffice of
Naval Hesearch under Contract NO0Q14-71-C-0294.

Paper to be presented at a Workshop on Representation of
Three-Dimensional 0Objects, Philadelphia, Pa., May 2, 1979

el N
AT

International

DL B
TN

333 Ravenswood Ave, » Menlo Pari, California 94025
{415) 326-6200 » Cable: STANRES, Menlo Park « TWX: 910-373-1246

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAR 1979 2 REPORTTYPE 00-03-1979 to 00-03-1979
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Hierarchical Representation of Three-Dimensional ObjectsUsing Verbal | o -\ nUmBER
Models
5¢c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)
12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited
13. SUPPLEMENTARY NOTES
14. ABSTRACT
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 24
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT

We present a formalism for the computer representation of three-
dimensional shapes, that has as its goal to facilitate man-machine
communication using verbal, graphic, and visual means. With this
method, pieces may be assembled hierarchically using any of several ways
of specifying attachment. The primitives of the representation are
generalized cylinders, and the creating of assemblies may make use of
the axes inherent in the primitives. Generic models may be described
that may leave somle parameters or dimensions unspecified, so that when a
specific instance of the model is described, those parameters may either
be explicitly specified or take on default values., The axes of local
coordinate frames may be given symbolic names. A set of computer
programs translates descriptions of objects into polyhedral models and

line drawings.

I INTRODUCTION

The computer representation of three-dimensional shape has occcupied
the attention of a number of researchers in the past several years. The
interest arises at least in part because a useful theory of shape would
have applicability to a wide variety of fields, such as design
automation, manufacturing automation, terrain mapping, vehicle guidance,
archaeology, restoration of works of art, surveillance, and intelligent
robots in general. But aside from any practical applications, the
problem has a great deal of inherent scientific and mathematical

interest.

Finding a useful and general method for representing shape is not a
simple problem. Methods that are primarily numerical are usually
limited in generality. They have great precision, but they are usually
restricted to a specific domain. Humans, on the other hand, can

communicate and understand a wide variety of shapes.

Various systems of computer representation have evolved or have
been invented for specific tasks. Generally, they fall into two

categories: surface representations and volume representations.

Surface may be approximated by triangular patches [1] with variocus
interpolation sachemes. Rectangular patches have been used successfully
with spline interpolation for the precise specification of airfoils and
automobile bodies [2]. Contour maps are a surface representation

widely used for a number of applications.

In volumetric modeling, the usual approach is to represent objects
as intersections and unions of simpler objects. Combining polyhedra and
¢ylinders iIn this way has been shown to be useful in the description of
machined metal parts for design automation [3-T7]. Generalized
cylinders have been used for modeling many everyday shapes for computer
vision [8,9]. A more specialized use of generalized cylinders has

been used in classification of pottery shapes [10].

The facet of the problem we are most interested in 1is the
representation of shape in ways that can be easily communicated and
understood by humans. This rules out methods that involve equations or
large arrays of numbers. Natural media of communication include (1)
words, (2) pictures, and (3) examples. We use the terms verbal
communication, graphical communication, and visual g¢ommunication to

denote these three modes.

Informal studies show that notions of similarity and difference are
important to human communication of shape concepts. The descriptions
used frequently begin with a familiar object, then mention significant
differences between the object being described and the familiar one.

Many alternate descriptions of the same object are possible.

This report describes one approach to describing shapes in natural,
human terms. The method is hierarchical, using generalized cylinders to
characterize primitive elements and their assemblies into higher 1level

subparts and parts.

The primitives of the representation are generalized cylinders,
comprised of a central axis or spine, and a cross secticon funection
defined on that axis. The primitives may be combined in ways that make
use of the axes inherent in the primitives. 1In many cases, however,
spine/cross-section representation is not appropriate, and more general
but less intuitive methods are needed. We provide the capability for

representing arbitrary spatial relationships for these cases.

Examples of some of the objects that may be usefully represented by
our methods are shown in Figures 1, 2, and 3. Figure 1 shows a
screwdriver, for which spine/cross-section methods are completely
sufficient. Figure 2 is a representation of an airplane. Spine/cross-
section methods are used to define most of its structure and shape, but
some auxiliary positioning methods are needed for somé of its component
parts. For the chair of Figure 3, only general structural

relationships will conveniently work.

Figure 1 Model of a Secrewdriver

Figure 3 Meodel of a Chair

The representation was developed without a specific application in

ind. One of the scenarics we used is similar in many ways to computer-
aided design: A user of the system describes an object te the computer
using LISP S-expressions, and the system then draws a picture of the
object to demonstrate that it understands the deseription. In another
scenario, stored deseriptions are used to guide the segmentation of data

from a time-of-flight range finder.

The following sections present the representation in more detail.

ITI REPRESENTATION BY SPINE/CROSS-SECTION METHODS

Representation by spine/cross-section methods uses a space curve,
or axis, and a cross-section function defined on this axis. The
primitives of this representation have been called generalized cylinders
[81]. Given =z simple object, we may determine its description by
locating an axis such that the object's c¢ross section (normal to the
axis) varies in a uniform manner along the axis. A description of a
complex object may be built up by "ecutting and pasting" the descriptions

of its constituent parts.

These concepts provide a natural, intuitive way of representing
certain solid objects. The model represents volumes, instead of
surfaces or appearances. The method allows segmentation of a complex
object into parts easily represented, and a hierarchical approach to the

description of objects.

Representation by generalized c¢ylinders is synthetic in nature;
that 1s, given a model, one can uniquely synthesize the contours of the
ob ject. As an analytic representation (for generating a model to
describe a given real object), only objects that have a well-defined
axis are easily described. In general, analysis in terms of an axis and
cross section does not yield a unigue answer; heuristic or interactive

techniques are needed to select natural or useful axes.

Segmentation is a eritical issue here. For analysis or for

synthesis it is necessary to find parts of an object that may be

described simply and to paste these segments together.

In our representation, objects may be composed of an assemblage of
smaller subobjects, or they may be primitive. Only primitive objects
have an explicit cross-section deseription; for all other objects the
shape is described by the shapes of, and relationships among, 1its
compeonent parts. Hierarchical representations of complex cbjects may be
built up by independently describing subparts, then describing the

structural relationships among the subparts.

IIT STRUCTURAL RELATIONSHIPS AMONG PARTS

There are three fundamental ways the relationships among parts may
be specified in ocur representation: (1) Structural relationships
involving snakes, which describe objects displaced along a single axis,
like beads on a string. The axes of the individual parts combine to
form the axis of the assembly. (2) Relationships involving attachment
points, which are like Tinkertoys: parts have predefined points at which
other pieces may be attached. (3) Displacement by arbitrary transforms,
which is the most general of the three methods; the other two can be
considered special cases of arbitrary displacements. But snakes and
attachment points are closer to Iintuitive notions of structure, and
usually assume a more compact Fform. Usually the description of any

object of significant complexity will use all three of these methods,

For ease in exposition, we will consider general relationships

first, then return later to the easier-to-use structures.

A. General Positional Relations

Consider the task of specifying a structure‘in which a one-inch
cube rests on top of a two-ineh cube, as shown in Figure 4. Suppose
the two subparts have been defined as will be shown in Section V and
given the names CUBET and CUBE2. Then the structure may be described by
the following S-expression:*

(CUBE2 (TRANSLATE +Z 2) CUEE1)

We start the interpretation of this description by placing the two-inch
cube at the origin of the local coordinate systenm. The coordinate
system is then translated two inches upward, and the one-inch cube is

placed at the relocated origin of coordinates.

Figure 4 A One-Inch Cube on Top of a Two-Inch Cube

Syntactically, a general structural relationship-+is represented by
a list of pieces and transforms. A piece may be a symbolically named

subpart (see Section V), or it may be another structure. This

* See any standard text on LISP [12 or 13] for a description of lists
and S-expressions.

allows a hierarchy of structures within the hierarchy of parts and

subparts.

A transform is an operation that changes one coordinate system into
another. The two most frequently used primitive transforms are ROTATE
and TRANSLATE, which provide rotary and linear motion, respectively.
Several additional transformation primitives give additiocnal descriptive

power to the representation, such as SCALE, MIRROR, and SKEW.

A complete description of the syntax of general structural

relationships is given in Appendix A.

A general structure descriptor should be interpreted from head to
tail. The position of any piece with respect to the coordinate system
in which the overall structure is described is the product of all the
transforms that precede the piece in the list. The structure descriptor
may be thought of as instructions to maneuver a "bus" that drops pieces

at its local origin of coordinates between maneuvers.

The chair of Figure 3 was assembled from primitive elements using

only translational and rotatiocnal transforms.

B. Attachment Points

A difficulty in the preceding example is that we must know the
height of CUBE2 in order to say where to place CUBE1. The situation ¢an
be made éasier by the use of symbolic names instead of numbers, but
there still is the problem of ascertaining that the names match. It is
much more useful to say, in effect, "place CUBE1 on topr of CUBEZ2,"

regardless of the size of either cube.

Attachment points provide one way to accomplish this. The
following S-~expression describes the two cubes of Figure 4 in terms of
attachment points:

*

{ CUBE2 (ATTACH CUBE2 TQP) CUBET)

An attachment point reference is syntactically equivalent to a
transform. It must contain the symbolic name of another subpart at the

appropriate level of hierarchy--i.e., the name of a piece occurring

previously in the structure description. The part name must be followed

by the name of an attachment poin%t, which must be defined elsewhere.

For all primitive objects the symbolic attachment-point names BASE,
TOP, SIDE, and BACK are predeclared. For nonprimitive objects,
attachment points may be declared as described in Section V.
Declaring a new attachment point involves specifying a transform or
relative displacement with respect to the BASE of an object--i.e., the

origin of the coordinate system in which the object is described.

Attachment points are particularly useful in describing biological
(animal, human) shapes and a wide variety of manufactured objects. A
computer model of an air compressor [11] was built almost entirely with
attachment-point structures. To represent the airplane of Figure 2, we
used attachment points to designate the attachment of the wings and tail

assenbly to the fuselage.

C. Snakes and Stacks

A ;nake is a group of objects sharing a single extended axis. It
is the snake relationship that gives our representation its spine/cross-
section capabilities. All primitive objects are defined to have an axis
and a length. Nonprimitive objects may also have axes and lengths,
either explicitly specified or implicitly derived. To assemble parts in
a snake structure we place the components end-to-end with their axes

touching, like stringing beads on a necklace.

Continuing our example of Figure U4, we have the following S-
expression as a representation of the structure using a stack:
(STACK CUBEZ2 CUBE1)

As a LISP S-expression, a stack is a list containing the atom STACK
followed by an arbitrary number of pieces. Each piece must have an axis
and length defined. The structure created by ihterpreting this
expression will have its axis vertical, with pieces stacked from bottom
to top. If the ultimate orientation of the structure is to be other

than vertical, additional transforms will be needed. Axes with bends or

corners in them may be created by inserting rotation transforms between

the component parts.

Each primitive object has a predefined axis and length. When parts
are assembled in a stack, the combined axis and length are assigned to
the structure. For nonprimitive objects assembled by other means, an
axis may be defined as a length plus a transform to define the axis

direction and location.

The screwdriver of Figure 1 was modeled exclusively with the STACK
construct. The fuselage of the airplane of Figure 2 was modeled with a

stack.

D. ummar

For the example of the two blocks stacked on top of one another,
the three methods of specifying their relative positions achieved the
Same result by using the same interpretive machinery. But the
compactneas of the description varied, as did the amount of wvariation
allowable in the description. Description by means of stacks is the
most compact and most intuitive; it requires that parts to be mated have
their axes lined up. Description of siructure by means of attachment
points removes the restriction of coincident axes, but requires an
explicit description of the attachment point in cases where the
attachment point is not predefined. Description by means of arbitrary
transforms 1s the most general of all, but does not easily allow

displacements to be a function of the base object.

IV PRIMITIVES

At the lowest level of the hierarchy of parts and subparts are the
primitives--pieces that are not further divisible and about which the

drawing routines have specific knowledge.

The most basic primitive we provide is the cyvlinder. Specifically,

we mean a right circular cylinder; the ends are square and the cross

section is circular. It is deseribed in its canonical orientation: with
its axis extending upward {in the +z direction) from the origin of

coordinates. The two specifiable dimensions are LENGTH and DIAMETER.

The other primitive we provide is the brick. A brick is similar to

a cylinder in all respects except the shape of its cross section.
Specifiable dimensions are LENGTH (parallel to the z-axls in the
canonical orientation), WIDTH (parallel to the x-axis), and DEPTH

(parallel to the y-axis).

It would be easy to create other primitives with new cross section
shapes. But the cylinder and the brick have been adequate so far for
our purposes. Clearly a general cross section description facility
would be useful for describing such things as rulers or fluted
screwdriver handles. But we have not given much thought as to how to

implement such a capability.

Note that some shapes are derivable from the circle and the
rectangle. For example, an elliptical cross section can be generated by

transforming a eylinder with a nonuniform SCALE transform.

Cross section dimensions are allowed to vary linearly from one end
of the segment to the other. This allows the generation of conical or
pyramidal shapes. DIAMETER, DEPTH, and WIDTH apply %to the base of the
primitive. The dimensions at the top are determined by the specifiable
parameter TAPER. A TAPER of zero (the default) implies a uniform cross
section; otherwise the top dimensions are (TAPER+1} times the bottom
dimensions. A TAPER of -1 ylelds a cone or pyramid with a point at the

top.

The only type of axis segment we currently permit is a straight
ohe. Curved axes may be approximated by piecewlse linear axes by
including rotation transforms in a STACK construct. The obvious first-
order improvement would be to allow axes to héve a curvature
(numerically, the reciprocal of the radius of curvature). The plane of
curvature would have to be fixed with respect to the canonical pesition.
This first-order extension should be able to handle 95% of the usual

cases of objects modeled with curved axes.

10

V CREATING OBJECTS FRCM PRIMITIVES

There are three classes of object in our representation:
prototvpes, descriptions, and instances. A prototype contains
information regarding a class of objects, including nominal or typiecal
dimensions, and allowable variation. A prototype is usually created by
a programmer, who decldes how to represent a particular object or piece.
(An interesting question for future research is how to write a computer
program that creates prototype descriptions from visual or range data,
possibly with interactive help from a human teacher.) The prototype
SCREWDRIVER in Appendix B contains all information the system knows

about screwdrivers in general.

Descriptions and instances refer to particular objects. A
description is a concise recipe for copying a prototype and assigning
specific values to its variables to form an instance. The description

(SCREWDRIVER (LENGTH 14)
(BLADE-THICKNESS (TIMES DEFAULT .5)))

refers to a screwdriver 14 inches long and with a narrow blade.

An instance is a copy of a prototype, with all of its parameters,
dimensions, and options giveﬁ specific wvalues. The process of
converting a deseription to an instance is called jinstantiation. Upen
instantiation, the description above might produce an instance whose

name is SCREWDRIVEROQZ23. -

Prototypes and instances are carried in our representation as LISP
atoms with property lists. The principal entries on the property list
of a prototype are as follows:

¥ DIMENSIONS--Names the sizes, angles, and other parameters

that may vary or be specified in a deseription, and their
defaults. .

¥ COORDINATE-FRAME--May define a leocal coordinate system.

% PARTS--Specifies the pieces to be assembled to produce this
object.

¥ STRUCTURE~-Gives the spatial relationships of the parts to
each other and to the whole, as described in Section III.

11

* ATTACHMENTPOINTS--Can provide named locations for assembly
with other objects.

¥ AXIS--Specifies the direction and length of the central

axis of the object.
Instantiating an object involves creating a g¢ontext in which
symbolic expressions may be evaluated. (The spaghetti stack capability
of INTERLISP [12] permits the preserving of contexts and their variable

bindings.) A tree of contexts parallels the tree of subparts.

When an instance is created from a prototype, a new context is
created. The DIMENSIONS and the COQORDINATE-FRAME properties of a part
provide a list of names that will be bound in the new context. For
instance, if the Iidentifier LENGTH heads an entry in the DIMENSIONS
property, a new variable of that name will be created as a part of the
new context. Usually each variable name will have a default wvalue or
expression for the variable to take. The defaults may be overridden by
modifiers in a description (as in the case of the 14-inch screwdriver,

above).

A large number of dimensions are specified in the SCREWDRIVER
description of Appendix B. The large number of dimensions is desirable
30 that we can precisely specify the shape for drawing routines, but the
programmer who makes use of the prototype description need not concern

himself with the ones he is not explicitly modifying.

The DIMENSIONS property of the chair in Figure 3 contains the
dimension names SEAT-WIDTH, SEAT-DEPTH, and LEG-DIAMETER (among others}.
The numbers corresponding teo these names are used to calculate the

relative positiocns of the legs with respect the the chair's seat.

At some time or another, each dimension must be evaluated--i.e., a
number must be calculated and assigned. At instantiation time, we have
the choice of transferring the unevaluated symbolic expressions from the
property list of the prototype to the variable bindings of the new
context, or evaluating each expression and storing the number as the
value of the variable., If expressions are stored, evaluation will take

place only when a number 1s needed (for instance, by %the drawing

12

program). This keeps useful information available for question
answering purposes, and will permit changing top-level parameters and
positions without the necessity of modifying the data structure. On the
other hand, the storing of numbers is vastly more efficient if semantic
capabilities are not needed. In our implementation of the
representation, provision is made to carry out instantiation in either

mode: numeric or symbolic.

& unique feature of our representation is the ability to specify
local coordinate directions. The need for this becomes apparent when
parts are being assembled in a major assembly. It is frequently
advantageous to describe a part in one orientation when its eventual
mounting will be in ancther direction. Consider, for example, what it
means to refer to the "top" of a bolt. If the bolt were considered in
isolation, the top would be assumed to refer to the head end, but if the
screw were inserted in a horizontal position the "top" would be
meaningless. We permit specifying direction names such as TOWARD=-HEAD
or TOWARD-TIP that are "embedded” in the object regardless of the
object's eventual corientation. Some more useful applications include
establishing a FRONT and BACK to assemblies, or a2 BOW, STERN, PORT, and
STARBOARD for ships, aircraft, and vehicles. The screwdriver prototype
of Appendix B defines the direction names HANDLE and TIP.

The entries in the list of COORDINATE-FRAME definitions are treated
identically to the variables of the DIMENSICNS property. That is, for
the screwdriver example, the names HANDLE and TIP are bound on the stack

and given the default values asszociated with each.

Every nonprimitive object should have a PARTS property. Each part
is given a symbolic name and is described by a part description with
appropriate modifiers. The STRUCTURE property specifies how the parts
are to be placed in relation to each other. Instantiating any object
causes its parts to be instantiated also, so that a hierarchy of

instances will parallel the hierarchy of prototypes.

To deseribe the airplane shown in Figure 2 required prototypes with

up to five levels of hierarchy. The screwdriver example in the appendix

13

has only a limited hierarchy. The prototype SCREWDRIVER-HANDLE is also
a component of other parts; the parts lists of other objects point to
it. The modifiers in the descriptions in the PARTS property of
SCREWDRIVER refer to the variables that will be bound in accordance with

the DIMENSIONS property of SCREWDRIVER-HANDLE.

The screwdriver has no attachment points defined. However,
examples of attachment-point definitions may be seen on the property
lists of BRICK and CYLINDER in Appendix B.

VI THE DISPLAY OF WIRE MODELS

We have a set of techniques and computer programs that will draw
simple "wire frame" displays of parts described in ocur formal
representation. We do this not only to demonstrate that graphical
interaction with the models iIs possible, but also to ensure that our
modeling techniques are correct and unambigucus. Unless we are capable
of displaying a number of parts in correct relationship toc one another,
we cannot be sure the relationship has been adequately defined. A
graphical capability is necessary for debugging the individual models,

and for assessing the adequacy of the descriptive method itself.

It is not our intention to invent new techniques for the display of
polyhedral models. Many other systems exist for display of polyhedra
[3-7]: these systems offer advanced capabilities such as hidden-line
elimination, shading, and calculation of interpenetration. There 1is
sufficient information available in our models to interface with any of

these programs.

Once an object has been instantiated, the instance may be passed to
the drawing routines for display. This process occurs in three stages.
First, the position and orientation of every primitive object in the
hierarchy must be computed. Next, the spine/cross-section
representations are converted to approximating polyhedra, and the

corners and edges are stored in a buffer array. Lastly, the picture is

14

drawn on the display console, using a perspective transformation whose

parameters are controllable by an operator at the terminal console.

The computation of position and orientation involves a fairly
complicated set of actions. The position of a %top-level object is
specified at the time it is instantiated; if no position is specified
the canonical orientation at the origin of coordinates defaults. The
position of each subpart of that object is the product of two
transforms--the position of its parent part {(the next higher level in
the hierarchy), and its relative position within the parent assembly.
The position within the parent may be computed from the STRUCTURE
property, and it is stored in the property list under the property
POSITIONINPARENT. The position of any low-level subpart instance is the
product of a sequence of relative positions up the hierarchy, times the

position of the top-level assembly.

The routines to interpret the structure are a large portion of the
entire software package. They must be cognizant of the dimensions of
all the parts to be assembled, the correct order in which to evaluate
positions, in which context to evaluate each datum, and numerous other

factors.

Transforms {positions and orientation descriptors) are carried in
symbolic form in instance prototypes, as S-~-expressions of the forms
(TRANSLATE ...) and (ROTATE ...). A certain amount of symbolie
computation can be done %to multiply the transforms together with
symbolic results. The computation makes use of rules such as following:

(TRANSLATE A B C) (TRANSLATE D E F) = (TRANSLATE A+D B+E C+F)

(ROTATE <any axis> A) (ROTATE <same axis> B)
= (ROTATE <same axis> A+B)

(ROTATE -<any axis> A) = (ROTATE +<same axis> -A)

-

(ROTATE +X 90) (TRANSLATE A B C)
= (TRANSLATE A =C B) (ROTATE +X 90)

In many cases the product of a large number of relative displacements
and rotations can be expressed as a single translation times a single

rotation.

15

Numerical information will be needed for the actual display, so
numerical evaluation routines generate a 4 x 4 homogeneous transform
matrix [14] according to the "directions"™ in the symbolic transform.
The dimensions and the transform matrix are now ready to be passed to

the actual drawing routine.

Each type of primitive object has its own drawing rouftine; the
cylinder drawing routine is typical. To draw a cylinder requires
knowing its dimensions (LENGTHE and DIAMETER) and its position in space.
The atoms LENGTH and DIAMETER are evaluated in the context of the
variable bindings of this cylinder, If numeric information has been
bound in the context of the part, the evaluation will yield a direct
answer. Otherwise, repetitive evaluation must occur until a numeric

answer is found.

To display any polyhedron, the three-dimensional c¢oordinates of
each of its edges are computed and stored in a separate display data
structure. (Cylinders are approximated by octagonal prisms for display
purposes.) When the edges are plotted in perspective on the display
screen, the polyhedra appear transparent, with wire edges. HNo attempt

at hidden line elimination is made.

The edges are drawn according to a perspective transformation
representing an imaginary camera., The position, orientation, and
internal parameters of this camera are controllable by a keyboard
interpreter to produce an arbitrary view of the object or assembly.
Keyboard commands can simulate the translation or rotation of the scene
or the camera with respect to a variety of coordinate systems. Split-

screen stereo may also be produced.

When a polyhedron is placed in the display data structure, the
indices of the first and last points in that data structure are stored
in its property 1list so that if c¢hanges are made to the part's
descripfion (i.e., if the part is moved) the display data structure may

be updated without redrawing the entire scene.

16

The wire-model drawings of Figures 1 through 3 were produced from
the prototypes in Appendix B and similar prototypes by the routines

described in this section.

VII CONCLUSIONS

A formal representation has been presented that permits deseription
of solid objects in natural, intuitive terms. A special feature of this
representation is the ability to define prototype objects and to ereate
instances of the prototypes with selected dimensions or parameters
altered. Another special feature is the variety of means for specifying
the relationships of objects and parts to each other, methods that
exploit inherent axes in the objects. Information 1s stored
semantically rather than numerically, making it available for a variety

of purposes.

Prototypes have been written to describe three disparate cbjects: a
screwdriver, an airplane, and a chair. The complete desecription of one
of these, the screwdriver, is presented in Appendix E. Instances have
been generated from these prototypes, and wire-model displays have been

drawn.

The models have been used in a research effort to analyze data from
a time-of-flight laser range finder [15]. Briefly, a sequence of
interactive techniques segments the array of range data into portiocns
corresponding to the primitive elements deseribed in the preceding
sections. Surface-fitting routines find the sizes, positions, and
orientations for the primitives that best fit the measured data. These

results are put into correspondence with the hierarchical models.

Thus with the aid of our models, the range-finder has been used as
a crude interactive modeling system. The technigques of shape mddeling
and of range data analysis can form the basis for a future system for
computer vision. To achieve such a capability would be a truly

significant achievement.

17

Appendix A

THE SYNTAX OF STRUCTURAL RELATIONSHIPS

Structural relationships are described by LISP S3-expressions.
Words in upper case denote specific literal atoms--i.e., themselves.
Words in lower case denote S-expressions that are defined or described
elsewhere. For a description of dotted pairs and lists see Weissman's
introduction to LISP [13].

= gen-structure

assembly 3
::= stack

gen-structure ::= NIL

) t:z { transform . gen-structure)
) ::= (piece . gen-structure)
stack ::= (STACK . stacktail)
stacktail NIL

- e
v ee e

(piece . stacktail)
(rotation-transform . stacktail)

attachment
translation-transform
rotation-transform
skew-transform
scale-transform
reflection-transform

transform

4e ba s as =a
R O T T T

attachment ::= (ATTACH part-name attachment-point-name)

translation-transform ::= (TRANSLATE direction number)
¢:= (TRANSLATE number number number)
(The first form transform generates a motion parallel
to a single axis. For the second form the three numbers
indicate simultaneous motions in x, y, and z, respectively.)

rotation-transform ::= (RQTATE direction number)
(The ROTATE transform generates a rotation about one axis.)

skew=transform ::= (SKEW direction number) .
scale-transform ::= (SCALE direction number)
:iz (SCALE number)
{(The first form denotes a stretching or compression in a
single dimension only. The second form denotes a uniform
change in scale.)

18

reflection-transform ::= { MIRROR direction)

direction ::= X | +X ! =X | Y | Y | =¥ | 2Z E.+Z i\ =2
plece ::= part-name
::= assembly
part-name ::= identifier
attachment-point-name ::= identifier

number ::= identifier
::= numerical constant

Appendix B

SCREWDRIVER PROTOTYPE

What follows is the complete description of a generic screwdriver,
as property lists attached to the LISP atoms SCREWDRIVER, SCREWDRIVER-
HANDLE, BRICK, and CYLINDER.

Similar prototypes have been created to represent a chair and an
airplane. Space restrictions do not allow their reproduction here.

(PUTPROPS SCREWDRIVER
DIMENSIONS ((LENGTH (BETWEEN 6 24))
(HANDLE-LENGTH (TIMES (BETWEEN .2 .5)
LENGTH))
(SHAFT-LENGTH (DIFFERENCE LENGTH HANDLE-LENGTH))
(SHAFT-DIAMETER (TIMES LENGTH (BETWEEN .01 .05)))
(TIP-LENGTH (TIMES SHAFT-DIAMETER 4))
(HANDLE-DIAMETER (TIMES LENGTH (ABOUT .1)))
(SLOT=-THICKNESS (TIMES SHAFT-DIAMETER (BETWEEN .1 .3))})
(SLOT-LENGTH SHAFT~DIAMETER))
PARTS ((HANDLE (SCREWDRIVER-HANDLE (LENGTH HANDLE-LENGTH)
(DIAMETER HANDLE-DIAMETER)})
(SHAFT (CYLINDER (LENGTH (DIFFERENCE SHAFT-LENGTH
TIP-LENGTH))
(DIAMETER SHAFT-DIAMETER)))
(BLADE (BRICK (LENGTH SHAFT-DIAMETER)
(WIDTH SLOT-THICKNESS)
(HEIGHT TIP-LENGTH))))
STRUCTURE ((ROTATE -Y)
(TRANSLATE O O (MINUS (QUOTIENT LENGTH 2)}))}
(STACK HANDLE SHAFT BLADE))
COORDINATE-FRAME ((HANDLE X)
(TIP -X)})

19

ATTACHMENTPOINTS NIL)

(PUTPROPS SCREWDRIVER-HANDLE
DIMENSIONS ((LENGTH (ABOUT 6))
(DIAMETER (TIMES LENGTH .25))
(XSEC (QUOTE EEXAGON))
({LENGTH LENGTH)
(!{DIAMETER DIAMETER)
(CYL-LENGTH LENGTH))
PARTS ((HANDLE (CYLINDER (LENGTH !LENGTH) (DIAMETER I!DIAMETER))))
STRUCTURE ((STACK HANDLE))
COORDINATE-FRAME ((BUTT X)
(BLADE -X)))

(PUTPROPS BRICK
DIMENSIONS ((LENGTH)
(DEPTH WIDTH)
(HEIGHT)
(WIDTH DEPTH)
(CYL-LENGTH HEIGHT))
ATTACHMENTPOINTS ((BASE NIL)
(TOP (TRANSLATE +Z HEIGHT))
(SIDE (TRANSLATE (TIMES HEIGHT .5)
0
(TIMES HEIGHT .5))
(ROTATE Y 90))
(BACK (TRANSLATE 0O
(TIMES HEIGHT .5)
(TIMES HEIGHT .5))
(ROTATE X 90))))

(PUTPROPS CYLINDER
DIMENSIONS ((HEIGHT LENGTH)
(DIAMETER)
{BOTTOM-DIAMETER DIAMETER)
(TOP-DIAMETER DIAMETER)
(CYL-LENGTH HEIGHT)
(LENGTH HEIGHT))
ATTACHMENTPOINTS ((BASE NIL)
(TOP (TRANSLATE +Z LENGTH))
(SIDE (TRANSLATE (TIMES DIAMETER .5)
0
(TIMES LENGTE .5))
(ROTATE Y 90))
(BACK (TRANSLATE © .
(TIMES DIAMETER .5)
(TIMES LENGTE .5))
(ROTATE X 90))))

20

10.

11.

12.

REFERENCES

R. E. Barnhill et al., "Smooth Interpolation in Triangles," Journal
of Approximation Theory, Vol. 8, pp. 114-128 (1973).

S. A. Coons, "Surfaces for Computer-Aided Design of Space Forms,"
Project MAC Report MAC-TE-U41, Massachusetts Institute of
Technology, Cambridge, Mass. (June 1967).

I. C. Braid, Designing with Volumes (Cantab Press, Cambridge,
England, 1973).

B. G. Baumgart, "GEOMED--A Geometric Editeor," Stanford Artificial
Intelligence Project Memo AIM-232, Stanford University, Stanford,
Calif. (May 1974).

A. A. G. Requicha, "Part and Assembly Description Languages -- I,
Dimensioning and Tolerancing Facilities in PADL," Production
Automation Project Report TM-19, University of Rochester,
Rochester, New York (1976).

A. A. G. Requicha et al., "Part and Assembly Description Languages
-- II, Proposed Specifications for Definitional Facilities in PADL-
1.n and Tentative Specifications for Command Facilities,"
Production Automation Projecet Report TM-20a, University of
Rochester, Rochester, New York (1974).

N. Okino et al., "TIPS~1: Technical Information Processing System

for Computer-Aided Design," in Computer Lansuages for Numeprical
Control (American Elsevier, New York, 1973).

G. J. Agin and T. 0. Binford, 9"Computer Descriptions of Curved
Objects," JEEE Transactions on Computers, Vol., 25, No. U4 (April
1976). .

R. K. Nevatia and T. 0, Binford, "Structured Descriptions of
Complex O0Objects," Proc, Third International Jeint Conferenge on
Artificial Intelligence, Stanford, Calif. (1973).

J. M. Hollerbach, "Hierarchical Shape Description of QObjects by
Selection and Modification of Prototypes," Master's Thesis,
Department of Electrical Engineering, Massachusetts Institute of
Technology, Cambridge, Mass. (1975). .
Nils J. lillsson, ed., "Artificial Intelligence--Research and
Applications," Progress HReport, Project 3805, Stanford Research
Institute, Menlo Park, Calif. (December 1975).

W. Teitelman, Interlisp Reference Manual,Xerox Palo Alto Research
Center Palo Alto, Calif. (October 1978).

21

13.

14,

15.

C. Weissman, LISP 1.5 Primer (Dickenson Publishing Company,
Belmont, Calif., 1967).

R. O. Duda and P. E. Hart, Pattern Classification and Scene
Analysis (John Wiley and Sons, New York, N. Y., 1973).

G. J. Agin, "Hierarchical Representation of Three-Dimensiocnal
Cb jeets," Project 1187, Stanford Research Institute, Menlo Park,
Calif. (March 1977).

22

